Active Project (2014 - 2017)

# Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II Project

SBIR/STTR Programs | Space Technology Mission Directorate (STMD)



#### **ABSTRACT**

NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of energy-efficient flight in any regime, and low drag is one of the fundamental characteristics of aerodynamic efficiency. For supersonic aircraft, drag can be broadly decomposed into four components: viscous or skin friction drag, lift-induced drag, wave or compressibility drag, and excrescence drag. The relative impact of these four drag forces depends upon vehicle-specific characteristics and design. However, viscous skin friction drag stands out as particularly significant across most classes of flight vehicles. Therefore, effective techniques to reduce skin friction drag on a vehicle will have a major and far-reaching impact on flight efficiency for low supersonic aircraft. In an effort to address the need for increased aerodynamic efficiency of low supersonic vehicles, PM&AM Research, in collaboration with Texas A&M University, propose to build upon our successful Phase I effort to mature/develop our novel energy deposition technologies, using basic, well-demonstrated energy-deposition techniques along the surface in supersonic flow to control/compress/forcibly-move the boundary layer fluid by creating a low-density "bubble-like" region, thereby reducing the viscous skin friction. Once matured, this solution will reduce the drag experienced by a low supersonic platform, allowing vehicles to exhibit increased aerodynamic efficiency.

#### **ANTICIPATED BENEFITS**

### To NASA funded missions:

Potential NASA Commercial Applications: Our technology can be used to improve the aerodynamic efficiency of a wide range of supersonic NASA programs, including access to space platforms and prototype aircraft.

### To the commercial space industry:

Potential Non-NASA Commercial Applications: Our technology



#### **Table of Contents**

| Abstract                    |
|-----------------------------|
| Anticipated Benefits1       |
| Technology Maturity 1       |
| Management Team 1           |
| U.S. Work Locations and Key |
| Partners 2                  |
| Technology Areas 2          |
| Image Gallery 3             |
| Details for Technology 1 3  |

### **Technology Maturity**



#### **Management Team**

#### **Program Executives:**

- Joseph Grant
- Laguduva Kubendran

# **Program Manager:**

Carlos Torrez

Continued on following page.

Active Project (2014 - 2017)

# Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II Project

SBIR/STTR Programs | Space Technology Mission Directorate (STMD)



can be used to improve the aerodynamic efficiency of a wide range of supersonic Government and industry platforms including supersonic business jets, commercial and military access to space vehicles, supersonic cruise vehicles, and highspeed delivery platforms, among others

#### U.S. WORK LOCATIONS AND KEY PARTNERS



U.S. StatesWith Work

# tead Center:

Langley Research Center

# Other Organizations Performing Work:

 Physics, Materials, and Applied Mathematics Research, LLC (Tucson, AZ)

#### **PROJECT LIBRARY**

#### **Presentations**

- Briefing Chart
  - o (http://techport.nasa.gov:80/file/22944)

#### Management Team (cont.)

#### **Project Manager:**

• Stephen Wilkinson

#### **Principal Investigator:**

Nathan Tichenor

# **Technology Areas**

#### **Primary Technology Area:**

Aeronautics (TA 15)

- └─ Ultra-Efficient Commercial Vehicles (TA 15.3)
  - Achieve Community Goals for Improved Vehicle Efficiency and Environmental Performance in 2025 (TA 15.3.1)
    - ─ Demonstrate Innovative Flow Control (TA 15.3.1.1)

#### **Secondary Technology Area:**

Aeronautics (TA 15)

 Innovation in Commercial Supersonic Aircraft (TA 15.2) Active Project (2014 - 2017)

# Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II Project



SBIR/STTR Programs | Space Technology Mission Directorate (STMD)

#### **IMAGE GALLERY**



Energy-Deposition to Reduce Skin Friction in Supersonic Applications, Phase II

# **DETAILS FOR TECHNOLOGY 1**

# **Technology Title**

Energy-Deposition to Reduce Skin Friction in Supersonic Applications

# **Potential Applications**

Our technology can be used to improve the aerodynamic efficiency of a wide range of supersonic NASA programs, including access to space platforms and prototype aircraft.